Argumentumelv

Az egyszerű zárt C görbe (feketével), f nullhelyei (kékkel) és f pólusai (pirossal). Itt .

A komplex függvénytanban az argumentumelv kapcsolatba hozza egy meromorf függvény nullhelyeinek és pólusainak számát a függvény logaritmikus deriváltjának zárt út mentén való integráljával.

Speciálisan, ha f(z) meromorf egy zárt görbe, C belsejében és a görbén, és az f függvénynek nincsenek a C görbén nullhelyei illetve pólusai, akkor

ahol N és P rendre a nullhelyek és pólusok számát jelöli a C görbe belsejében multiplicitással illetve renddel számolva. A tételnek ez a alakja feltételezi, hogy a C görbe egyszerű, és az óramutató járásával ellentétesen irányított.

Általánosabban feltesszük hogy f(z) meromorf a komplex sík egy Ω nyílt részhalmazán, és legyen C zárt görbe az Ω halmazon, és itt összehúzható egy pontra, továbbá elkerüli f(z) nullhelyeit és pólusait. Jelölje minden z ∈ Ω esetén n(C,z) a C z körüli körülfordulási számát. Ekkor :,

ahol az első összeg f nullhelyein megy végig multiplicitással, és a második f pólusain renddel számítva.


Developed by StudentB